If it's not what You are looking for type in the equation solver your own equation and let us solve it.
234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)=13
We move all terms to the left:
234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)-(13)=0
We add all the numbers together, and all the variables
4008x^2-13=0
a = 4008; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·4008·(-13)
Δ = 208416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208416}=\sqrt{16*13026}=\sqrt{16}*\sqrt{13026}=4\sqrt{13026}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13026}}{2*4008}=\frac{0-4\sqrt{13026}}{8016} =-\frac{4\sqrt{13026}}{8016} =-\frac{\sqrt{13026}}{2004} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13026}}{2*4008}=\frac{0+4\sqrt{13026}}{8016} =\frac{4\sqrt{13026}}{8016} =\frac{\sqrt{13026}}{2004} $
| 234x^2+(546x^2)-(352x^2)+(1234x^2)*(8x^2)+(2354x^2)=13 | | 3d-3)=d-3 | | 4(x-1)+7x=2x+4 | | 234x^2+(546x^2)-(352x^2)+(1234x^2)*(8x^2)+(2354x^2)*(124326x^2)=13 | | 9.52+x=17.88 | | x+8/x=12/9 | | (n-9)*10=80 | | 1.2*^10^-5=2x(x) | | 5x=103 | | 6x+5=3+14 | | 6(x+1)+48=90 | | 1.2x10^-5=2x(x) | | -25=6x-7 | | 2x/(x+3)=1 | | 3=3.3x | | d-13= 25 | | y=5(-1/2)-2 | | 234x^2+(546x^2)-(352x^2)+(1234x^2)=11 | | 24x-22=-5(1-6x) | | 0.75(8+e)=2–1.25e | | 5,722+x=6,154 | | 24x-22=-5(1-6x | | 5n+1=3;+7 | | X²-20x-21=0 | | 19.95+85x=184.85 | | -4n-5+n=7(7-7n)=6(1+6n) | | x2+2x=4 | | 3u/7=-15 | | (3x-6)(9x+6)=0 | | 3x^2+92x=-9 | | -46=-v/3 | | 6x+35=7x+16 |